

FICHA TÉCNICA CODEFLUX TIG X309L

FT-C201672A2 rev.2 - FECHA: 15/04/2021

Clasificación

Especificaciones AWS	Especificaciones EN
AWS A5.22: R309LT1-5	EN ISO 17633-A: T 23 12 L Z I1 2

<u>Descripción:</u> Varilla tubular para uniones de metales disimilares de aceros inoxidables austeníticos y aceros ferríticos, aleación tipo inoxidable austenítico 24%Cr-13%Ni (309L) para distintas capas cojín. Adecuada para la pasada de raíz en soldadura TIG por un lado, sin gas de respaldo.

Aplicaciones: Existen 3 principales áreas de aplicación:

Capas cojín y recubrimientos de acero inoxidable: Capas en CMn, acero dulce o aceros débilmente aleados para unir chapa de recubrimiento 304L/321. Las capas posteriores se depositan con un electrodo escogido para igualar el recubrimiento, por ejemplo 308L, 347.

Juntas disímiles: La tolerancia a la dilución se aprovecha para combinar los inoxidables 410, 304L, 321 y 316L con aceros dulces y débilmente aleados como contrafuertes, soportes y otros acoplamientos. Se suelen evitar las temperaturas de servicio por encima de los 400°C. También se usa para soldar "útiles ferríticos" con 12%Cr como el Cromweld 3CR12, hasta sí mismo y otros aceros.

Juntas de metal similares: Los aceros forjados y fundidos del tipo 23Cr-12Ni (p.e. ASTM 309 y CH8, BS 309S24 y 309C30) pueden soldarse si el servicio requiere una resistencia a la corrosión a temperatura inferior a 400°C. Sin embargo, en servicios estructurales a temperatura elevada, se debe utilizar metal soldado con una elevada cantidad controlada de carbono y con niveles bajos de ferrita.

Materiales base a ser soldados:

AISI 309, 309 L	Unión de aceros no aleados o de baja aleación con acero inoxidable o refractario, laminado o fundido. Utilizados principalmente bajo unas condiciones de alta dilución.
-----------------	---

Composición química típica del metal depositado (%):

С	Si	Mn	Cr	Ni	Mo	Nb	Fe
0.03	0.80	1.50	24.5	13	-	-	Resto

Microestructura: Austenita con ferrita en el rango 12-20FN. Los hilos macizos son propensos a tener menos ferrita que los consumibles MMA y FCW, y la ferrita desciende hasta el rango 8-15FN para los hilos macizos.

Propiedades mecánicas típicas del metal depositado:

Límite elástico	Carga de rotura	Elongación	Energía de impacto (Charpy V)			
R _{P0.2}	$\mathbf{R}_{\mathtt{M}}$	A4	20°C	- 20°C	-110°C	-196℃
N/mm2	N/mm2	%	(Julios)	(Julios)	(Julios)	(Julios)
460	580	35	140	-	-	-

Recomendaciones para la soldadura: Las temperaturas entre pasadas y de precalentamiento dependen de la dureza del material base. Como orientación, los aceros dulces no requieren precalentamiento y los aceros endurecidos hasta 250°C.

Datos técnicos y Posición de soldadura:

Gas: 100% Argón (EN ISO 14175:I1).

Posiciones de soldadura:

Información Complementaria:

	EMBALAJE			
Diámetro Varilla (mm)	Voltaje	Intensidad de corriente (A)	Tipo Corriente (Polo -)	Peso Paq. (Kg)
1.2	12-14	120-280	CC	5

Materiales Complementarios:

PROCESO	PRODUCTO	CLASIFICACIÓN AWS	CLASIFICACIÓN EN
ELECTRODO SMAW	Inoxcode 309	AWS A5.4: E309L-16	EN ISO 3581-A: E 23 12 L R
HILO MACIZO MIG / MAG	Codemig 309L Codemig 309LSi	AWS A5.9: ER309L AWS A5.9: ER309LSi	EN ISO 14343-A: G 23 12 L EN ISO 14343-A: G 23 12 L Si
VARILLA TIG	Codetig 309L Codetig 309LSi	AWS A5.9: ER309L AWS A5.9: ER309LSi	EN ISO 14343-A: W 23 12 L EN ISO 14343-A: W 23 12 L Si
HILO TUBULAR FCAW	Codeflux 309L	AWS A5.22: E309LT0-1/4	EN ISO 17633-A: T 23 12 L R C /M3
ARCO SUMERGIDO SAW	Hilo Subarc 309L	AWS A5.9: ER309L	EN ISO 14343-A: S 23 12 L
FUNDENTE	Flux BF 38 Flux WP-380	===	EN ISO 14174: SA AF 2 5644 DC H5 EN ISO 14174: SF CS 2 5742 DC

