

FICHA TÉCNICA SUBARC S3 NiMo1

FT-C20178EG rev.2 - FECHA: 15/02/2023

Clasificación

Especificaciones AWS	Especificaciones EN			
AWS A 5.23: EF3	EN ISO 14171-A (EN 756): S3Ni1Mo			

<u>Descripción:</u> Hilo macizo de aleación NiMo con mayor contenido de Mn para soldadura por arco sumergido de aceros de grano fino de alta resistencia.

<u>Aplicaciones:</u> en la construcción de recipientes y aparatos, tuberías de aceros de alta resistencia.

Materiales base a ser soldados:

Aceros de grano fino según EN 10025, EN 10028: P460N / S460NL a S550QL Aceros apagados y templados como N-A-XTRA 70, 20MnMoNi5, HY80. Fundentes adecuados: BF 5.1, BF 6.5 y BF 10MW

Aceros para tubos según ISO 3183, EN 10208 y API-5: L485Q / X70 hasta L555Q / X80. Fundentes adecuados: BF 6.30 y BF 6.5

Aceros de construcción naval: alta resistencia hasta 460 MPa límite elástico Fundente adecuado: BF 10MW

Composición química típica del hilo (%):

I	С	Si	Mn	Mo	Ni	Cr	P	S	Cu total
\mathbb{L}	0.12	0.19	1.73	0.53	0.95	0.04	0.009	0.001	0.07

Para las características mecánicas del metal depositado, vea el resultado obtenido con el flux de interés.

Propiedades mecánicas típicas:

Par Hilo S3NiMo1 Flux BF 5.1							
Límite elástico	Carga de rotura	Elongación en %	Energía de impacto (Charpy V)				
Rs	Rm		0°C	-20°C	-30°C	-40°C	-60°C
(MPa)	(MPa)	%	(Julios)	(Julios)	(Julios)	(Julios)	(Julios)
> 570	> 670	> 22	> 110	> 100	-	> 47	-

	Par Hilo S3NiMo1 Flux 10MW						
Límite elástico	Carga de rotura	Elongación en %	Energía de impacto (Charpy V)				
Rs	Rm	, a	20°C	-20°C	-30°C	-40°C	-60°C
(MPa)	(MPa)	%	(Julios)	(Julios)	(Julios)	(Julios)	(Julios)
> 570	> 670	> 22	> 140	> 110	-	> 80	> 47

La idoneidad del tipo de fundente depende en gran medida de su aplicación. En combinación con el hilo, el fundente más adecuado debe coincidir con los requisitos del material base lo más fielmente posible bajo las condiciones de soldadura existentes.

Posición de soldadura: Plano y plano frontal.

Información Complementaria:

	EMBALAJE			
Diámetro Hilo (mm)	Voltaje	Intensidad de corriente (A)	Tipo Corriente (Polo +)	Peso Paq. (Kg)
2.0	26/29	300/400	CC	25
2.4	27/30	350/450	CC	25
3.2	27/30	430/530	CC	25
4.0	27/30	480/580	CC	25

Materiales Complementarios:

PROCESO	PRODUCTO	CLASIFICACIÓN AWS	CLASIFICACIÓN EN
ELECTRODO SMAW	Microde 1NiMo	AWS A 5.5: E9018-G	EN ISO 18275-A: E 55 2 NiMo B22 H5
HILO MACIZO MIG / MAG	Codemig 100S Codemig 110S	AWS A5.28: ER100S-G AWS A5.28: ER110S-1	EN ISO 16834-A: G 69 4 M21 Mn3Ni1CrMo (EN ISO 16834-A: G Mn3Ni2,5CrMo)
VARILLA TIG	Codetig 100S Codetig 110S	AWS A 5.28: ER100S-1 AWS A 5.28: ER110S-1	EN ISO 16834-A: W Mn3Ni1,5Mo EN ISO 16834-A: W Mn3Ni2,5Mo
FUNDENTE	Flux BF 5.1 Flux BF-10MW	AWS A5.17: EB2-F894- EB2-B2	EN ISO 14174: SA AB 1 67 AC H5 EN ISO 14174: SA FB 155 AC H5

