

FICHA TÉCNICA CODEMIG HAS C-276

FT-C20156E1 FECHA: 09/09/2019

Clasificación

Especificaciones AWS	Especificaciones EN			
A5.14: ERNiCrMo-4	EN ISO 18274: S Ni 6276			

Descripción: Hilo macizo para MIG.

Aleación C276 con base níquel con composición típica Ni-15%Cr-16%Mo-4%W-5%Fe.

Aplicaciones: La composición del depósito de soldadura combina la aleación C276 de composición similar con Ni-15%Cr-16%Mo-4%W-5%Fe. El carbono y el silicio se controlan tan cerca como sea posible de los niveles mínimos de la aleación forjada para minimizar el carburo y los precipitados de la fase intermetálica, que pueden reducir la resistencia a la corrosión en la fase de recién soldado. Las versiones fundidas de la aleación normalmente poseen más carbono y silicio (como la aleación Hastelloy C forjada, hoy obsoleta), aunque las soldaduras en mal estado se tratan normalmente para una resistencia a la corrosión óptima.

La aleación C276 posee una alta resistencia a la corrosión en un amplio abanico de ácidos y sales bajo oxidación y especialmente en condiciones desfavorables. Éstas se pueden dar en ambientes con ácidos hidrocloruro e hidrofluoruro, hipocloritos, cloritos y gas cloro húmedo, ácido sulfúrico, fosfórico y muchos otros ácidos orgánicos. También posee una resistencia excepcional frente a las fisuras y las picaduras en agua de mar y al agrietamiento bajo tensión inducida por cloruro (superior a la aleación 625). La alta temperatura se limita por la formación de la fase intermetálica.

Además de estas propiedades en la aleación C276, estos consumibles se caracterizan por una buena tolerancia a la dislución en la mayoría de aleaciones ferríticas y con alto contenido en níquel, y son adecuadas para soldaduras disimilares y superficiales de recargue que favorecen la resistencia a la corrosión, la carga y la dureza. Las excelentes propiedades por debajo de los -196°C permiten su uso para soldar instalaciones criogénicas con un 5-9%Ni.

Sus aplicaciones incluye **bombas, válvulas, tuberías y depósitos** para utilizar en ambientes agresivos, en **plantas de procesos químicos**; también como equipamiento para la **desulfuración del gas de combustión** y equipamiento para la **producción de crudo y gas en alta mar.**

Materiales base a ser soldados:

ASTM			DIN			
Forjado	Fundido		Forjado		Fundido	
UNS N10276	A494 CW-12MW		2.4819 (NiMo16Cr15W)		2.4883 (G-NiMo16Cr)	
A743/A744 CW-12M						
Aleaciones con propietario						
Hastelloy™ Alloy C-276(Haynes) Inco Alloy C-276			(Special Metals)	Nicrofer	5716hMoW (VDM)	

Composición química típica del hilo (%):

С	Mn	Si	S	P	Cr	Ni	Mo	W	Fe	V	Cu	Co
0.005	0.5	0.05	0.005	0.01	16	58	16	3.5	6	0.2	0.05	0.50

Microestructura: En la fase de recién soldado, la micro-estructura consiste en autenita con algunos carburos.

Propiedades mecánicas típicas:

Límite elástico	Carga de rotura	Elongación	Dureza	Energía de impacto (Charpy V)			
0.2% MPa	MD-	4d		+20°C	0°C	-30°C	-196°C
0.2% MPa MPa		%	нv	(Julios)	(Julios)	(Julios)	(Julios)
500	740	46		-	-	-	-

Recomendaciones para la soldadura: Recomendaciones para la soldadura: No es necesario el precalentamiento y la temperatura entre pasadas debe mantenerse preferiblemente por debajo de los 100°C y la energía aportada a un máximo de 1.5kJ/mm.

Datos técnicos y posición de soldadura:

Gas: Argón 99.9% o Argón Helio (EN ISO 14175: I1, I3)

Posiciones de soldadura:

Información Complementaria:

PARÁMETROS DE SOLDADURA EMBALAJE						
Diámetro del hilo (mm)	Voltaje	Intensidad de corriente (A)	Tipo Corriente (Polo +)	Peso Paq. (Kg)		
1.2	28	160	DC	15		

Materiales Complementarios:

PROCESO	PRODUCTO	CLASIFICACIÓN AWS	CLASIFICACIÓN EN
ELECTRODO SMAW	Nicode C276	AWS A5.11: E NiCrMo-4	EN ISO 14172: E Ni 6276
VARILLA TIG	Codetig HAS C276	AWS A5.14: ER NiCrMo-4	EN ISO 18274: S Ni 6276

